SYNTHESIS AND ANTIBACTERIAL ACTIVITY OF A NOVEL BIPHENYL-UREIDO PENICILLIN

Sir:

Intensive research over many years on acylated ampicillin derivatives has led to the discovery of broad-spectrum antibacterial agents such as piperacillin $(1)^{1}$. Ureido penicillins of type (2), although generally less potent, also possess broadspectrum activity²⁾. We found that in this series the biphenyl derivative (3) was particularly active against Gram-positive organisms. Recently penicillin derivatives possessing a 3.4-dihydroxyphenyl moiety, e.g. $(4)^{3}$ and $(5)^{4}$, have been shown to display enhanced activity against Gramnegative bacteria, especially against certain strains of Escherichia coli and Pseudomonas aeruginosa. We now report the synthesis of sodium 6β -R,2-[3'-(4-phenylphenylcarbonyl)-3'methyl-1'-ureido]-2-(3,4-dihydroxyphenyl)acetamido penicillanate (15), a novel penicillin derivative containing both the 3,4-dihydroxyphenyl and biphenyl moieties. The in vitro activity of this compound is compared with that of piperacillin and related penicillins $12 \sim 14$.

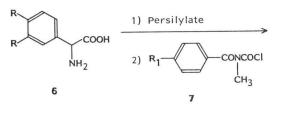

The penicillins $12 \sim 15$ were synthesized (Scheme 1) by heating the appropriate D-amino acid (6, R=H or OH) with a mixture of hexamethyldisilazane and chlorotrimethylsilane and then reacting the resulting persilylated intermediate with the N-carbonylchloride (7, R₁=H or Ph). Hydrolytic work-up gave the free acids (8~11) which were coupled to benzyl 6β -aminopenicillanate using N,N'-dicyclohexylcarbodiimide (for R=H) or mixed anhydride activation (for R=OH). The resulting esters were deprotected (H₂, Pd-C) and converted to sodium salts (12~ 15) using sodium bicarbonate.

Table 1 shows the antibacterial activity of penicillins 12~15 compared with that of piperacillin. It can be seen that compound 12 displayed broad-spectrum activity but was generally from 2- to 5-fold less active than piperacillin. The biphenyl analogue (13), apart from modest activity against Pseudomonas compared favourably with piperacillin against other Gram-negative species and was considerably more active against Grampositive organisms such as Staphylococcus aureus Oxford and Enterococcus faecalis I. The dihydroxyphenyl compound (14) had improved Gram-negative activity when compared with the unsubstituted phenyl analogue (12) and piperacillin, but showed reduced activity against Grampositive organisms. In contrast the dihydroxyphenyl biphenyl derivative (15) combined the Gram-positive activity of compound 13 with the Gram-negative activity of 14 and was from 2- to 10-fold more active than piperacillin against most of the organisms tested. Plasmid-mediated β -lactamase-producing organisms proved generally less susceptible and, indeed, none of the compounds were active against R-TEM-producing E. coli JT4. Interestingly E. coli JT425, a chromosomally-mediated β -lactamase-producing strain, proved considerably more sensitive to 15 than to piperacillin.

HO CONH CONH HO ŃН NH соон COOH ço ĊO Ċ₂H₅ 3 R = NHCO 4 5 R = NCO OH L CH3 $R_1 = H$, Cl, NO₂ etc.

The penicillin 15 proved to have considerably

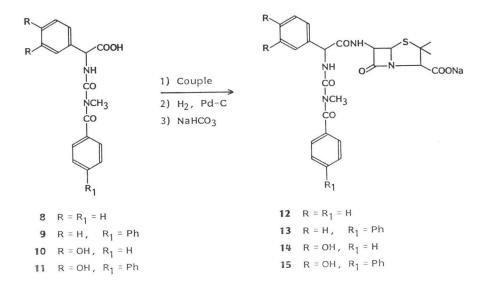


Table 1. Comparative antibacterial activity of ureido penicillins $(12 \sim 15)$ and piperacillin.

Organism	MIC (µg/ml) ^a				
	12	13	14	15	Piperacillin
Escherichia coli NCTC 10418	2.5	0.25	≦0.06	≦0.06	1
E. coli JT 4 (R_{TEM})	>128	>128	>128	>128	>128
E. coli JT 425 ^b	64	4	8	0.5	16
Pseudomonas aeruginosa NCTC 10662	32	16	2	1	4
Klebsiella pneumoniae A	16	8	1	0.25	4
Serratia marcescens US 32	4	0.25	1	0.25	1
Enterobacter cloacae N1	8	1	2	1	1
Morganella morganii I	4	0.25	≦0.06	≦0.06	1
Staphylococcus aureus Oxford	0.5	0.12	2	0.25	0.5
S. aureus Russell ^b	128	64	32	32	>128
Enterococcus faecalis I	2	1	8	2	4
Streptococcus pyogenes CN 10	<0.06	0.06	0.12	≦0.06	0.06

^a Determined by serial dilution in Blood Agar Base (Oxoid) against an inoculum of 10⁶ cfu.

^b Ampicillin-resistant strain.

diminished activity when tested *in vivo* compared to its potency *in vitro*. This may be attributed to a very high level of serum binding (>95%).

Acknowledgement

The authors gratefully acknowledge useful discussions with Dr. A. W. TAYLOR, Mr. M. J. BASKER and Dr. R. J. PONSFORD during the course of this work.

MICHAEL J. DRIVER* JOHN LOWTHER

Beecham Pharmaceuticals Research Division, Brockham Park, Betchworth, Surrey, RH3 7AJ, United Kingdom

(Received June 2, 1986)

References

1) JONES, R. N.; C. THORNSBERRY, A. L. BARRY,

P. C. FUCHS, T. L. GAVAN & E. H. GERLACH: Piperacillin (T-1220), a new semisynthetic penicillin: *In vitro* antimicrobial activity comparison with carbenicillin, ticarcillin, ampicillin, cephalothin, cefamandole and cefoxitin. J. Antibiotics 30: 1107~1114, 1977

- See, for example, KOENIG, H.B.; W. SCHROECK, K. G. METZGER & H. DISSELNKOETTER (Bayer A.-G.): Penicillins. Ger. Offen. 2,025,414, Dec. 12, 1971
- NAITO, T.; J. OKUMURA & H. HOSHI (Bristol-Meyers): Antibacterial penicillins. Brit. UK Pat. Appl. 2,043,627, Oct. 9, 1979
- OHI, N.; B. AOKI, T. SHINOZAKI, K. MORO, T. NOTO, T. NEHASHI, H. OKAZAKI & I. MATSU-NAGA: Semisynthetic β-lactam antibiotics. I. Synthesis and antibacterial activity of new ureidopenicillin derivatives having catechol moieties. J. Antibiotics 39: 230~241, 1986